<<  < 2013 - >  >>
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31




题目描述:

Description

Alice and Bob are playing a kind of special game on an N*M board (N rows, M columns). At the beginning, there are N*M coins in this board with one in each grid and every coin may be upward or downward freely. Then they take turns to choose a rectangle (x1, y1)-(n, m) (1 ≤ x1≤n, 1≤y1≤m) and flips all the coins (upward to downward, downward to upward) in it (i.e. flip all positions (x, y) where x1≤x≤n, y1≤y≤m)). The only restriction is that the top-left corner (i.e. (x1, y1)) must be changing from upward to downward. The game ends when all coins are downward, and the one who cannot play in his (her) turns loses the game. Here's the problem: Who will win the game if both use the best strategy? You can assume that Alice always goes first.
 

Input

The first line of the date is an integer T, which is the number of the text cases.
Then T cases follow, each case starts with two integers N and M indicate the size of the board. Then goes N line, each line with M integers shows the state of each coin, 1<=N,M<=100. 0 means that this coin is downward in the initial, 1 means that this coin is upward in the initial.
 

Output

For each case, output the winner’s name, either Alice or Bob.
 

Sample Input

2 2 2 1 1 1 1 3 3 0 0 0 0 0 0 0 0 0
 

Sample Output

Alice Bob
 

题目大意是给定一个n*m的数字矩形,0代表反面向上,1代表正面向上。
每个人可以选定一个矩形,要求矩形的左上角点出硬币一定要正面朝上,右下角一定位于(n,m )处。
谁第一个把所有的硬币全部翻为反面,谁就赢了。
比赛的时候我连题目都没看懂呢。
以为每次可以随便选取一个矩形,晕死啊,ORZ。
其实不要想太多,这个题目有一个很重要的条件——每次选择的矩形必须包含(n,m)这个点哦。所以每次翻转都一定翻动了那个硬币,由于是轮流翻转,所以最终谁胜利了,只有(n,m)这个硬币决定(想想为什么)。

啥都不说了,上代码:
#i nclude <iostream>
using namespace std;
int t,n,m;
int main()
{
    cin>>t;
    while (t--)
    {
        cin>>n>>m;
        n*=m;
        while (n--)
            {   cin>>m; }
        if (m) cout<<"Alice\n";
            else cout<<"Bob\n";
    }
    return 0;
}
你是不是想说:“水题也发题解,深坑啊!”。
其实我还想说:“水题居然在比赛的时候也A不出来,巨坑啊!”。
ORZ ORZ ORZ ORZ ORZ ORZ ORZ ORZ
ORZ ORZ ORZ ORZ ORZ ORZ ORZ ORZORZ ORZ ORZ ORZ ORZ ORZ ORZ ORZ
ORZ ORZ ORZ ORZ ORZ ORZ ORZ ORZORZ ORZ ORZ ORZ ORZ ORZ ORZ ORZORZ ORZ ORZ ORZ ORZ ORZ ORZ ORZ
  • 标签:博弈论 
  • 发表评论:
    天涯博客欢迎您!