|
|
|
|
<< < 2013 - 8 > >>
日 |
一 |
二 |
三 |
四 |
五 |
六 |
|
|
|
|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
|
|
|
|
|
|
|
今天与华科的友谊赛,5小时。果断被虐出翔啊。不过我做的一个题目还是挺有收货的呢。 题目描述:
Description In number theory, a multiplicative function is an arithmetic function F(n) of the positive integer n with property that F(1) = 1 and whenever a and b are coprime (gcd(a, b) = 1), then F(ab) = F(a)F(b). The function E(n) defined by E(n) = 1 if n = 1 and = 0 if n > 1, is sometimes called multiplication unit for Dirichlet convolution or simply the unit function. If F and G are two multiplicative functions, one defines a new multiplicative function F * G, the Dirichlet convolution of F and G, by where the sum extends over all positive divisors d of n. With this operation, the set of all multiplicative functions turns into an abelian group; the identity element is E. from Wikipedia, the free encyclopedia In this task you have to find the inverse of a multiplicative function. To cope with overflow problem, we define arithmetic functions as: F:N —> Z2007 where N is the set of positive integers, and Z2007 is a residue ring (ring of integers 0–2006, where arithmetic operations + and × are performed modulo 2007). Function G is called the inverse of function F if and only if F * G = G * F = E. You are given the first N values of function F, you need to find the first N values of the inverse function G. Output In the first line of the output print first N values of inverse function G, separated by spaces: G(1), G(2), …, G(N). 你看得懂题目意思吗?如果你在半小时内看不懂题目意思,那么我很高兴,我的英语和你是一个级别的。不过也不该这么说,我个人觉得这个题目描述很垃圾,我真心看了半个小时才懂得。 比赛时,华科有的队伍很快就把这个题目砍掉了。我看题好久够终于也1A了。 题目的意思是定义F和G两个函数 给你每个F(1-n)的值,求其逆函数G的值 要求满足F*G=E(i=0是,E=1;i=1是E=0)
看懂题目后就知道这是个水题了。 稍加思考,显然就是一个扩展欧几里得解同余方程的题目嘛。 假设我们已经把G(1....i-1)求好了,现在要求Gi 这样我们只要枚举每个i的因子,列出方程,方程里面只有Gi一个未知量,带入扩展欧几里得模板就得出答案了呢。
下面上代码:
#i nclude <iostream>
#i nclude <cstdio>
#i nclude <cstring>
#define ll long long
#define maxn 10100
#define M 2007
using namespace std;
ll f[maxn],g[maxn],n,i,j,a,b,d,x,y,tep,c;
void exgcd(ll a,ll b,ll& d,ll& x,ll& y)//扩展欧几里得模板
{
if (b==0) { d=a,x=1,y=0; }
else { exgcd(b,a%b,d,y,x); y-=(a/b)*x; }
}
int main()
{
cin>>n;
for (i=1; i<=n; i++) cin>>f[i];
a=f[1],b=M,c=1;
exgcd(a,b,d,x,y);
g[1]=(x%M+M)%M;
for (i=2; i<=n; i++)
{
tep=0;
for (j=2; j*j<i; j++)
{
if (i%j!=0) continue;
tep+=f[j]*g[i/j]+f[i/j]*g[j];
tep%=M;
}//把已知量求和,减掉
if (j*j==i) tep+=f[j]*g[j];
tep+=f[i]*g[1];
tep=M-(tep%M);
a=f[1],b=M,c=tep;
exgcd(a,b,d,x,y);
g[i]=(tep/d)*x;
g[i]=(g[i]%M+M)%M;
}
cout<<g[1];
for (i=2; i<=n; i++) cout<<' '<<g[i];
cout<<endl;
return 0;
}
代码很挫,请见谅。
|
|
|