|
|
|
|
<< < 2013 - 8 > >>
日 |
一 |
二 |
三 |
四 |
五 |
六 |
|
|
|
|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
|
|
|
|
|
|
|
这几天开始搞数论了呢。因为我在我们队分到了数论这一块的任务,所以。。。ORZ 数论的确是比较蛋疼的东西呢 , 数论最最关键的不是要打出代码,而是要多学习公式定理,并且能够把所学习的知识灵活运用到解题中间去。。。
下面仅以一个例题来说明我最近学到的数论知识吧,也算是这几天的一个总结呢,或者说是对所学知识阐述一下自己的观点吧 。
题目编号为:POJ2447 描述如下:
POJ - 2447Time Limit: 3000MS | | Memory Limit: 65536KB | | 64bit IO Format: %I64d & %I64u |
[Submit] [Go Back] [Status] Description RSA is the best-known public key encryption algorithm. In this algorithm each participant has a private key that is shared with no one else and a public key which is published so everyone knows it. To send a secure message to this participant, you encrypt the message using the widely known public key; the participant then decrypts the messages using his or her private key. Here is the procedure of RSA:
First, choose two different large prime numbers P and Q, and multiply them to get N (= P * Q). Second, *** a positive integer E (0 < E < N) as the encryption key such that E and T= (P - 1) * (Q - 1) are relatively prime. Third, compute the decryption key D such that 0 <= D < T and (E * D) mod T = 1. Here D is a multiplicative inverse of E, modulo T.
Now the public key is constructed by the pair {E, N}, and the private key is {D, N}. P and Q can be discarded.
Encryption is defined by C = (M ^ E) mod N, and decryption is defined by M = (C ^ D) mod N, here M, which is a non-negative integer and smaller than N, is the plaintext message and C is the resulting ciphertext.
To illustrate this idea, let’s see the following example: We choose P = 37, Q = 23, So N = P * Q = 851, and T = 792. If we choose E = 5, D will be 317 ((5 * 317) mod 792 = 1). So the public key is {5, 851}, and the private key is {317, 851}. For a given plaintext M = 7, we can get the ciphertext C = (7 ^ 5) mod 851 = 638.
As we have known,for properly choosen very large P and Q, it will take thousands of years to break a key, but for small ones, it is another matter.
Now you are given the ciphertext C and public key {E, N}, can you find the plaintext M? Output Output the plaintext M in a single line. |
读完题目以后发现这个题目中有很多的英文变量名,别急,慢慢看就知道了。 题目总的意思是说,告诉你一种加密和解密的方法,然后题目给你相关的变量,要求你根据所给的量求未知的量。
对于我来说,这个题目有两大难点: 一、题目要求大素数的对模的逆,不过还好,用扩展欧几里得就ok搞定了。 二、题目要对大素数进行分解,大素数。。。。 10^64 你开玩笑吗? 显然不是赤裸裸的枚举素数是啊 , 应该使用 Pollard_Roh因数分解算法。
看完题目后就知道要求什么东东了,因此我先贴上我AC代码,接下来讲讲这两个难点的具体实现过程。
#i nclude <iostream>
#i nclude <cstdio>
#i nclude <cstdlib>
#i nclude <cstring>
#define ll long long
using namespace std;
ll mul_mod(ll x,ll y,ll n)
{
ll ans=0;
while (y>0)
{
if (y&1) ans+=x;
if (ans>n) ans-=n;
x<<=1;
if (x>n) x-=n;
y>>=1;
}
return ans;
}
ll gcd(ll a1,ll a2)
{
return a2==0?a1:gcd(a2,a1%a2);
}
ll Abs(ll x) { return x>=0?x:-x; }
ll pollard(ll n)
{
ll x,d,y,c;
while (1)
{
c=y=x=Abs((ll)rand())%n;
for (int i=1,k=2;;i++)
{
x=mul_mod(x,x,n);
if (x>c) x-=c;
else x+=n-c;
d=gcd(Abs(x-y),n);
if (d==n) break;
if (d>1) return d;
if (i==k) { y=x; k<<=1; }
}
}
}
void exgcd(ll a,ll b,ll& x,ll& y)
{
if (b==0) { x=1,y=0; }
else { exgcd(b,a%b,y,x); y-=x*(a/b); }
}
ll power(ll a,ll b,ll m)
{
ll ans=1;
while (b>0)
{
if (b&1) ans=mul_mod(ans,a,m);
a=mul_mod(a,a,m);
b>>=1;
}
return ans;
}
int main()
{
ll tep,n,c,e,t,p,q,a,b,x,y,d;
while (cin>>c>>e>>n)
{
tep=pollard(n);
p=tep-1;
q=n/tep-1;
t=p*q;
a=e,b=t;
exgcd(a,b,x,y);
if (x<0) x=(x%t+t)%t;
d=x;
cout<<power(c,d,n)<<endl;
}
return 0;
}
一、扩展欧几里得算法: 扩展欧几里得算法是exgcd,显然它只是求最大公约数的一个扩展版。 下面先上主函数的代码,再一步一步分析 ll exgcd(ll a,ll b,ll& d,ll& x,ll& y) { if (b==0) { d=a; x=1; y=0; } else { exgcd(b,a%b,d,y,x); y-=x*(a/b); } } 注意 ll表示的是long long或 __int64 因为一般的int数据范围是不够的。 这个算法的具体证明和实现只要在草稿纸上列出 a1*x1+b1*y1=gcd a2*x2+b2*y2=gcd 其中gcd为(a1,b1)的最大公约数,由于题目算法过程相当于辗转相除法,所以gcd也是(a2,b2)的最大公约数。 又有a2=b1,b2=a1%b1=a1-a1/b1*b1 代入后即可得 x1,y1,x2,y2 的关系了。
二、Pollard_Roh因数分解。 该算法的主要思想就是不断地随机枚举每一个数来判断该数是否是所求数的因数 如果要判断一个数是否为素数的话,应该设置一个循环上限,使其超过了这个上限就自动退出就可以了,据说这个算法还是比较靠谱的,而且时间开销上十分的优。 贴个代码以示路过: ll pollard(ll n) { ll x,y,c,d; while (1) { x=y=c=abs((ll)rand())%n; for (int i=1,k=2;;i++) { x=mul_mod(x,x,n);//边乘边取模,否则果断会溢出出错。 if (x>c) x-=c; else x+=n-c; d=gcd(abs(x-y),n); if (d==n) break;可能是质数,重新指定x,y进行判断。 else if (d!=1) return d;//d!=1说明找到了一个因数d,本题可以直接退出函数了。 if (i==k) { y=x; k<<=1; }//控制x和y的值,这是比较随意的,只要设置合理就行。 } } }
|
|
|
|
|
|
好有才!
|
|
|